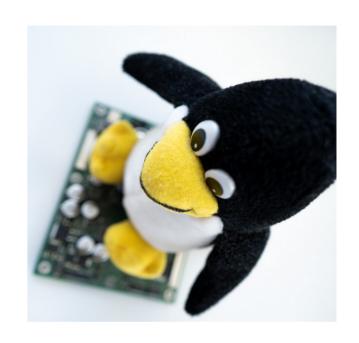


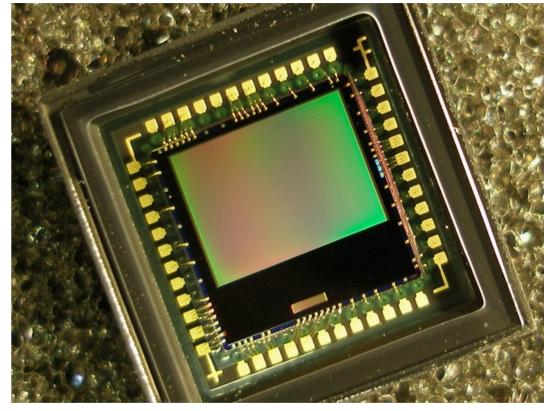
TECHNOLOGIEGRUPPE ML / HMI

EINLEITUNG - 1


- Warum Technologieentwicklung?
 - Fordern uns die bestehenden Kunden zu wenig?
 - Innovationen: Market Pull / <u>Technology Push</u>
- Technology Push
 - Schnell agieren bei neuen Kundenanforderungen
 - ... statt langsam reagieren bis der Kunde woanders hin geht

EINLEITUNG - 2

- Beispiel Vision Systeme
 - Gibt es aktuell nicht im TLK, läuft unter ML(AI) / HMI
 - Optimale Ergänzung für das i.MX8MP Portfolio, da angenommen wird: HMI wird nicht so stark "wachsen" wie für Geschäftserfolg nötig
 - Idee: Umkehrung: statt Bilder hinaus → Bilder hinein
 - Viel bestehende Technologie kann weiterverwendet werden:
 - GELin & Linux Erfahrung
 - i.MX8MP Plattform
 - Fehlendes Know-How wir in TLK aufgebaut


TEIL 1

SMARTE
(VIDEO) KAMERASYSTEME
ein Systemüberblick

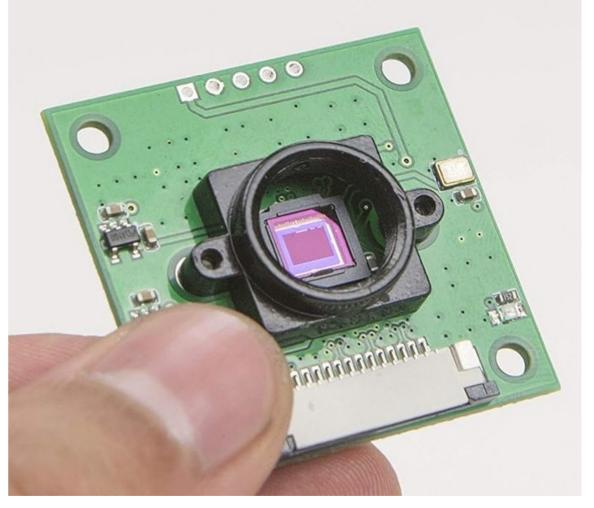
KAMERAS – 1: BILDGEWINNUNG

- Bildsensor(en)
 - Fotozelle (1d <u>2d</u>)
 - Farbe (RGB)
 - Schwarzweiß (IR, VIS)
 - Wärembilder
 - Stereokameras (Leap Motion, Kinect...)

https://de.wikipedia.org/wiki/Datei:Matrixw.jpg

KAMERAS – 2: OPTIK

- Optischer Pfad
 - Linse / Linsensysteme
 - Makro / Zoom / Weitwinkel
 - Blenden / Shutter
 - Filter
- Beleuchtung (aktiv (IR...), passiv)
- Projektionen
 - Laser / Linienbilder / Rahmen
 - Indirekt über Display



https://www.arducam.com/product/m12-mount-camera-lens-kit-arduino-raspberry-pi/

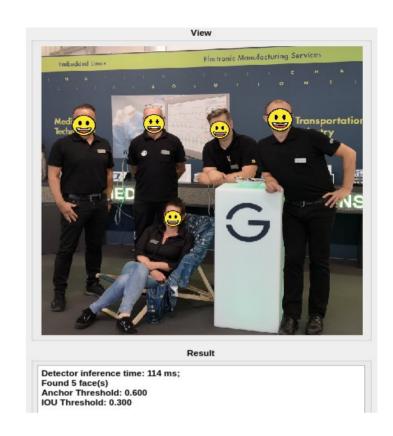
KAMERAS – 3: MECHANIK

- Linsenhalter / Linse / Leiterplatte
- Justierung der Optik!
 - Fokusanpassung (Schärfe)
 - Blenden / Shutter / Filter
 - statisch/dynamisch
- Gehäuse (Kompaktheit, Dichtheit, Wärmeabfuhr, Montagemöglichkeit)
- Steckverbindungen (intern, nach außen)

https://www.amazon.com/Arducam-Mount-Lens-Holder-Styles/dp/B07QMRDZYS

KAMERAS – 4: ELEKTRONIK 1

- PSU (AC/DC/POE/Batterie/Akku Versorung)
- Zusätzliche Sensoren: (Helligkeit, Temperatur, Beschleunigung)
- Mikrofon
- RTC
- LED(s) (Aufnahme, Beleuchtung (IR...))
- Bussystem für Daten des Bildsensors (intern / extern)
 - Intern: CSI (~20cm)
 - Extern: Analoges Videosignal (xx m)
 - Extern: FPD-Link (~15m)
 - Extern: USB (~5 m)


KAMERAS – 5: ELEKTRONIK 2

- i.MX8MP Modul (VPU, NPU...)
- Speicher zur Zwischenspeicherung von Videodaten (SD...)
- GPIOs
 - Aktivierung externer Beleuchtung
 - Taster, Schalter: (Snapshot / Start-Stopp des Videos)...
- Mikrocontrollersysteme / FPGA
 - Schnelle Datenvorverarbeitung
- Bussysteme zur Weiterleitung der Videos / Daten (LAN, CAN, RSXXX...)
- Display für Vorschau, HMI...
- USB für HW-Lizenzschlüssel

KAMERAS - 6: SOFTWARE

- Steuerung der HW (Blende, Shutter, externe Beleuchtung...)
- Datentransformation / Filter / Kompression
- Berechnungen (Tiefenbilder, Privacy...)
- Lizenzen (Keys für Proprietäre Softwarekomponenten)
- Smart Kamera
 - Datenverarbeitung per ML (NPU...)
 - Webinterface (Konfiguration, Status, Live Überwachung, Updates...)
 - Steuerung von IO's / simplen Bussystemen
 - Das Thema wird kommen, <u>mit</u> oder ohne uns...

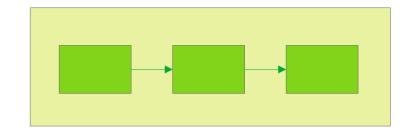
TEIL 2

GStreamer

ein Überblick

GSTREAMER - 1: EINLEITUNG

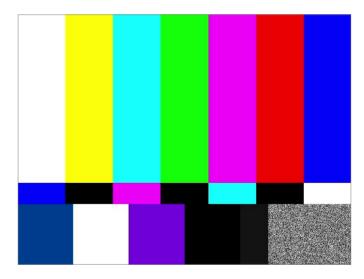
- Was ist GStreamer?
- Multimedia Framework
- Schweitzer Taschenmesser zum
 - Erstellen
 - Editieren
 - Streamen
 - Konsumieren
 von Multimedia (<u>Video</u> und/oder Audio)



GSTREAMER - 2: MODULARES KONZEPT 1

- Graph des Datenstroms: Pipeline
- Plugin: Element der Pipeline
 - Genau EINE Funktion: z.B: Videoquelle, Videosenke
 - Bestitzt Quellen und/oder Senken für Daten
 - PADs sind die Anschlüsse der Plugins (Sink Pads (In), Source Pads (Out))
 - Fähigkeiten der Plugins: Capabilities (Formate, Framerates...)
 - Beliebig kombinierbar solange Capabilities zusammenpassen
 - Jeder Plugin kann einen vom mehreren Zuständen haben (gestoppt, warten, abspielen...)

GSTREAMER - 3: MODULARES KONZEPT 2

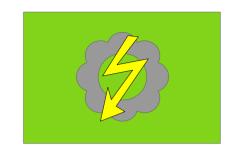


- GStreamer Framework
 - Kümmert sich um die Orchestrierung der Pipeline mit ihren Plugins
 - Synchronisiert der Plugins zueinander
 - Bietet gute Debugmöglichkeiten mit vielen Debuglevels (bis zur Überflutung...)
 - Kann Basis für grafische Darstellung der Pipeline ausgeben
 - Steuerung der Pipeline über eigenes Programm möglich
 - Aufbau und Start der Pipeline über Kommandozeile möglich

GSTREAMER - 4: PLUGINS-2: QUELLEN

- Videosource
 - Kamera
 - Datei
 - Netzwerk
 - Fakesource

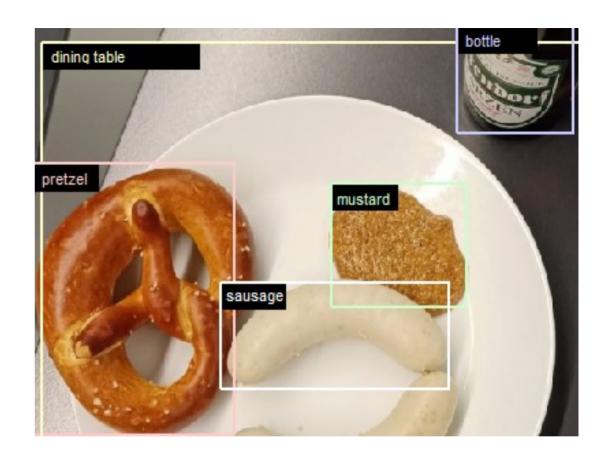
GSTREAMER - 5: PLUGINS-3: SENKEN

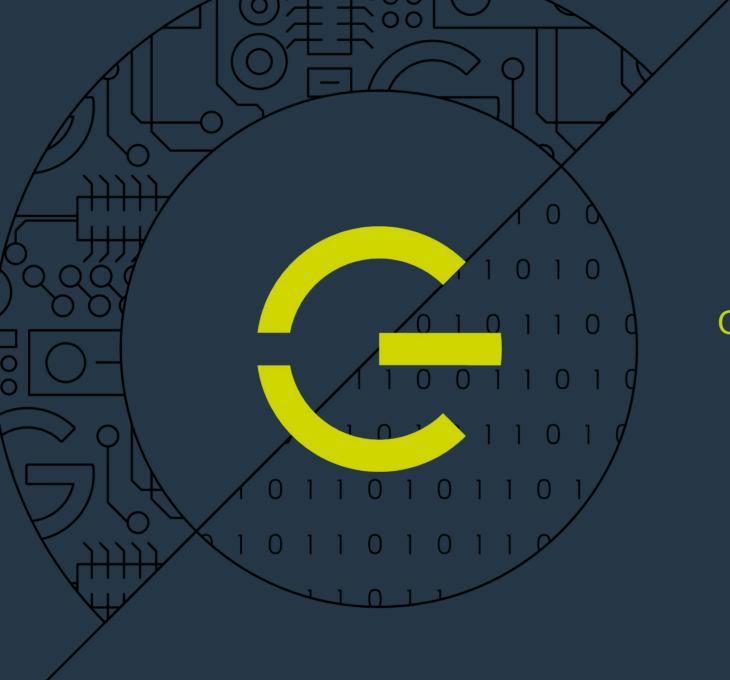

- Videosink
 - Monitor (autovideosink, kmssink(embedded)...)
 - Anwendung (Qt...)
 - Datei
 - Netzwerk
 - Fakesink
 - FPS Sink
 - für Zeitmessungen als Zwischenschritt zum Debugging
 - Als Option wird tatsächliche Sink benötigt

GSTREAMER - 6: PLUGINS-4: VERARBEITUNG

- Filter
- Queue (Warteschlange/Puffer)
- Videoconvert (Format z.B.: YUV→ RGB...)
- Videocodec (Encode / Decode): SW oder HW(VPU)
- Streaming ((De)-Payloader)
- Multiplexer / Demultiplexer (z.B.: Audio/Video zusemmenfügen/trennen)
- Mixer (z.B.: Greenbox/Alphakanal mit Hintergrund mischen)

GSTREAMER - 7: DEMO


- Fakevideosink → Monitor
- USB-Kamera → Filter → Monitor



ENDE

- Smarte (Video-) Kamerasysteme ein Systemüberblick
- GStreamer

Fragen?

CONVERTING CHALLENGES INTO SOLUTIONS

